现代监控量测新技术

课程讲义

授课人: <u>许福友</u>
单位: <u>大连理工大学</u>建设工程学部
编制日期: <u>2016 年 11 月 1 日</u>

第一章:边界层风洞概述

风洞是指在一个按一定要求设计的管道系统内,采用动力装置驱动可控制的 气流,根据运动的相对性和相似性原理进行各种气动力试验的设备,如图 1-1 所示,主要有循环式和开口式风洞两类。图 1-2 为大连理工大学风洞实验室外观。

图 1-1 风洞布置示意图

图 1-2 大连理工大学风洞外观

风洞是空气动力学研究和飞行器验证、大型土木工程结构抗风设计的最基本 的试验设备。主要特点:

(1)风洞中的气流参数,如速度、演练、密度、温度等,都可以比较准确地控制,并且随时可以改变、因而风洞试验可以方便、可靠地满足各种试验要求;

(2)风洞试验在室内进行,一般不受大气环境(如季节、昼夜、风雨、气温等)变化的影响,可以连续进行试验,因而风洞的利用率很高;

(3)风洞试验时,试验数据的测力既方便又准确,而且比较安全;

(4) 风洞试验可以测试结构物的空气精力性能和动力性能;

风洞试验的不足之处主要包括:

(1)风洞试验不能同时满足相似率所提出的所有相似准则,如雷诺数等;

(2)风洞试验中,气流是有边界的,不可避免地存在洞壁的影响,称为洞 壁干扰。同时,模型支撑系统会影响模型流场,称为支架干扰,这些都影响流场 的几何相似。

第二章:风洞试验类型

风洞试验按不同的标准划分,有不同的分类。按被测量的参数类型划分,主要有测速试验、测振试验、测力试验和测压试验。

2.1 测速试验

风速测定有多种方法和仪器设备,对于均匀流速,可以采用皮托管(图 2-1) 和微压计(图 2-2)测量。对于高频脉动风速,可以采用热线风速仪(图 2-3 和 2-4)来测试。热线风速仪测试精度高,但容易损坏,且需要多次标定。可以采 用眼镜蛇脉动风速仪(图 2-5)来测三维脉动风速。图 2-6 是风洞三维脉动风速 仪流场测试照片,图 2-7 是典型脉动风速时程。

图 2-1 皮托管测风速示意图

图 2-2 微压计

图 2-3 热线风速仪示意图

图 2-4 热线风速仪测量系统

图 2-5 眼镜蛇探头风速仪

图 2-7 典型脉动风速时程

2.2 测振试验

测振试验主要是测量在风荷载动力作用下模型的位移和加速度时程,一般通过位移传感器和加速度传感器来采集数据。加速度传感器应用广泛,在此介绍一种非接触式激光位移计,见图 2-8。其基本原理是:传感器发出光照在被测物体表面,然后经反射被传感器接收,当被测物体发生振动时,相对传感器距离发生变化,光线传输时间随之改变,根据光线传输时间变化来反算位移的变化,从而得到位移振动时程。其基本原理示意图见图 2-9。

激光位移计精度高,在风洞试验中应用广泛,见图 2-10。图 2-11 为桥梁模型风洞试验时,采用激光位移计来测量不同断面的振动位移。激光位移计广泛用于多种测试领域。

根据量测范围和精度要求不同,激光位移计有多种型号,见图 2-12。

由于光线具有散射和干扰作用,因此当用多个激光位移计量测时,位移计之间距离(图 2-13)有相关要求,不同型号位移计所需要的具体参数见表 2-1。

图 2-8 激光位移计

图 2-9 激光位移计基本测试原理示意图

图 2-10 典型桥梁风洞测振试验

图 2-12 不同型号激光位移计相关参数

图 2-13 相邻位移计安装距离要求

Unite (mm in)

Sensor model No.	а	b	с
ANR1150	40 1.575	20 0.787	70 2.756
ANR1151			
ANR1182	50 1.969	60 2.362	110 4.331
ANR1115	80 3.150	100 3.937	150 5.906
ANR1250	50 1.969	40 1.575	90 3.543
ANR1251			
ANR1282	80 3.150	80 3.150	130 5.118
ANR1215	120 4.724	140 5.512	190 7.480
ANR1226	210 8.268	350 13.780	400 15.748

表 2-1 不同型号位移计在临近安装时的距离要求

2.3 测力试验

利用测力天平(图 2-14)测试出作用在结构上的气动合力(系数)。

特点:刚性模型;无需模拟结构本身的刚度质量和动力特性;严格几何相似; 对竖向结构需要模拟大气边界层。

试验目的:获得结构平均气动合力和脉动气动合力。

测力天平有多种分类方式,按照测量原理:机械式天平、应变式天平、磁悬 浮天平、压电式天平。

按所测试的分量数分类 : 单分量天平 、三分量天平、五分量天平、六分量 天平。

按天平的测试频率:普通天平和高频天平。

风洞中各种模型测力试验照片见图 2-15。

风洞测力试验示意图见图 2-16。

图 2-14 典型测力天平

图 2-15 典型测力风洞试验

2.4 测压试验

测压试验目的是通过风洞试验测力结构模型表面压力。测压试验设备主要有 测压传感器、压力扫描阀系统(机械、电子)。以下主要介绍最为先进的电子压 力扫描阀。

电子压力扫描阀测量系统(图 2-17)出现于 20 世纪 80 年代,设计思想先进, 每个待测压力点各自对应一个压力传感器。使用电子扫描阀技术,大大提高了采 集速度,每秒钟可以采集 10 万次,最大可采集几千个点,精度可达 0.03%。采 用高精度压力校准器进行联机实时自动校准,速度快、精度高。

电子压力扫描阀系统一般由4部分组成,即系统控制器、数据采集盒控制单元、压力校准单元和电子压力扫描器。

图 2-17 电子压力扫描阀

风压测量的基本过程:测压管~~压力导管~~压力传感器~~A/D采集

板~~PC 机,其示意图见图 2-18。

图 2-18 风洞测压试验流程示意图

图 2-19 为各种模型表面测压风洞试验照片。

图 2-19 各种模型表面测压试验

图 2-20 为标准化后的实测脉动风压时程曲线。

图 2-20 标准化的脉动风压时程

对于测压试验,需要注意管道信号畸变问题(图 2-21)。管路较短时,由于 压力波反射与入射波叠加会产生驻波;另外,还可能会产生管腔共振。有以下对 策:1、增长管路;2、压扁管;3、毛细管;4、理论修正。

图 2-21 实测风压与真实风压对比

压扁管(图 2-22)可以在一定程度上修正幅值,但对相位影响很小,而有时 相位对结构动力响应分析非常重要。图 2-23 为不同条件下压力幅值比。

图 2-22 压扁管示意图

图 2-23 不同条件下压力幅值比

理论修正方法,主要是通过测量频响函数来修正。可以采用如图 2-24 所示 来获得不同长度管道条件下的频响函数。压强标定设备见图 2-25,相关参数:管 道内径: 0.9mm;管道长度 (cm): 30,40,50,60,70,80,90,100,120,150,180,200;输 入正弦信号,频率分别为: 5,10,15, ...100,110,120,130,140,160,180,200,220,240, 260,280,320,340Hz。

图 2-24 压强标定系统示意图

图 2-25 压强标定设备

图 2-26 和图 2-27 分别为不同条件下幅值比和相位差。

图 2-27 不同条件下信号相位差

图 2-28 为某长方体模型表面测压风洞试验照片,图 2-29 为其上表面测压点 布置图,图 2-30 为不同管长条件下脉动风压标准差的相对误差。

图 2-28 某长方体表面测压风洞试验

图 2-29 测压点布置平面图

图 2-30 不同管长条件下风压系数脉动值相对误差

图 2-31 为某桁架三维有限元模型,利用不同管长获得表面风压时程,进而 计算竖向振动标准差(图 2-32)。结果表明,管道越长,误差越大,需引起注意。

图 2-31 某平面桁架结构空间有限元模型(阻尼比: 2%; 跨径: 40m)

图 2-32 不同条件下竖弯位移标准差相对误差